Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Vertical Transport in InAs/GaSb Superlattices: Model Results and Relation to In-Plane Transport

Identifieur interne : 002161 ( Main/Repository ); précédent : 002160; suivant : 002162

Vertical Transport in InAs/GaSb Superlattices: Model Results and Relation to In-Plane Transport

Auteurs : RBID : Pascal:11-0232809

Descripteurs français

English descriptors

Abstract

Operation of InAs/GaSb superlattice-based devices requires efficient transport of carriers perpendicular to superlattice layers by drift and/or diffusion. While transverse mobility measurements are performed routinely, vertical transport measurements are difficult and nonstandard, so that very little is known about their value and dependence on material quality, which is important in device modeling. In such a situation, model calculations can help fill the void. In this work, both the horizontal and vertical electron transport in InAs/GaSb superlattices qua superlattices, not quantum wells, as in Gold's model or its extensions, are modeled. The respective Boltzmann equations in the relaxation time approximation are solved, using the interface roughness scattering as the dominant mobility-limiting mechanism. In absence of screening, a universal relation that the vertical relaxation rates are always smaller than horizontal relaxation rates is derived; hence vertical mobilities are generally smaller than horizontal mobilities. We calculate vertical and horizontal mobilities as a function of such superlattice parameters as layer widths and the correlation length of interface roughness. The calculated ratios of the vertical to horizontal mobilities can be used to estimate vertical mobilities from measurements of horizontal mobilities.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0232809

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Vertical Transport in InAs/GaSb Superlattices: Model Results and Relation to In-Plane Transport</title>
<author>
<name sortKey="Szmulowicz, F" uniqKey="Szmulowicz F">F. Szmulowicz</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of Dayton Research Institute, 300 College Park</s1>
<s2>Dayton, OH 45469-0072</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Dayton, OH 45469-0072</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Brown, G J" uniqKey="Brown G">G. J. Brown</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Materials & Manufacturing Directorate, Air Force Research Laboratory, WPAFB</s1>
<s2>OH 45433-7707</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0232809</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0232809 INIST</idno>
<idno type="RBID">Pascal:11-0232809</idno>
<idno type="wicri:Area/Main/Corpus">003183</idno>
<idno type="wicri:Area/Main/Repository">002161</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0277-786X</idno>
<title level="j" type="abbreviated">Proc. SPIE Int. Soc. Opt. Eng.</title>
<title level="j" type="main">Proceedings of SPIE, the International Society for Optical Engineering</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Binary compounds</term>
<term>Boltzmann equation</term>
<term>Electron transport</term>
<term>Indium Arsenides</term>
<term>Interface roughness</term>
<term>Measuring methods</term>
<term>Quantum wells</term>
<term>Relaxation time</term>
<term>Superlattices</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Méthode mesure</term>
<term>Temps relaxation</term>
<term>Rugosité interface</term>
<term>Superréseau</term>
<term>Puits quantique</term>
<term>Composé binaire</term>
<term>Indium Arséniure</term>
<term>Equation Boltzmann</term>
<term>InAs</term>
<term>As In</term>
<term>0130C</term>
<term>0707D</term>
<term>Transport électron</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Operation of InAs/GaSb superlattice-based devices requires efficient transport of carriers perpendicular to superlattice layers by drift and/or diffusion. While transverse mobility measurements are performed routinely, vertical transport measurements are difficult and nonstandard, so that very little is known about their value and dependence on material quality, which is important in device modeling. In such a situation, model calculations can help fill the void. In this work, both the horizontal and vertical electron transport in InAs/GaSb superlattices qua superlattices, not quantum wells, as in Gold's model or its extensions, are modeled. The respective Boltzmann equations in the relaxation time approximation are solved, using the interface roughness scattering as the dominant mobility-limiting mechanism. In absence of screening, a universal relation that the vertical relaxation rates are always smaller than horizontal relaxation rates is derived; hence vertical mobilities are generally smaller than horizontal mobilities. We calculate vertical and horizontal mobilities as a function of such superlattice parameters as layer widths and the correlation length of interface roughness. The calculated ratios of the vertical to horizontal mobilities can be used to estimate vertical mobilities from measurements of horizontal mobilities.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0277-786X</s0>
</fA01>
<fA02 i1="01">
<s0>PSISDG</s0>
</fA02>
<fA03 i2="1">
<s0>Proc. SPIE Int. Soc. Opt. Eng.</s0>
</fA03>
<fA05>
<s2>7945</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Vertical Transport in InAs/GaSb Superlattices: Model Results and Relation to In-Plane Transport</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Quantum sensing and nanophotonic devices VIII : 23-27 January 2011, San Francisco, California, United States</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>SZMULOWICZ (F.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BROWN (G. J.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>RAZEGHI (Manijeh)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>SUDHARSANAN (Rengarajan)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>BROWN (Gail J.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>University of Dayton Research Institute, 300 College Park</s1>
<s2>Dayton, OH 45469-0072</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Materials & Manufacturing Directorate, Air Force Research Laboratory, WPAFB</s1>
<s2>OH 45433-7707</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>SPIE</s1>
<s3>USA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s2>79451U.1-79451U.9</s2>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA25 i1="01">
<s1>SPIE</s1>
<s2>Bellingham WA</s2>
</fA25>
<fA26 i1="01">
<s0>978-0-8194-8482-6</s0>
</fA26>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21760</s2>
<s5>354000174731750550</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>20 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0232809</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Proceedings of SPIE, the International Society for Optical Engineering</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Operation of InAs/GaSb superlattice-based devices requires efficient transport of carriers perpendicular to superlattice layers by drift and/or diffusion. While transverse mobility measurements are performed routinely, vertical transport measurements are difficult and nonstandard, so that very little is known about their value and dependence on material quality, which is important in device modeling. In such a situation, model calculations can help fill the void. In this work, both the horizontal and vertical electron transport in InAs/GaSb superlattices qua superlattices, not quantum wells, as in Gold's model or its extensions, are modeled. The respective Boltzmann equations in the relaxation time approximation are solved, using the interface roughness scattering as the dominant mobility-limiting mechanism. In absence of screening, a universal relation that the vertical relaxation rates are always smaller than horizontal relaxation rates is derived; hence vertical mobilities are generally smaller than horizontal mobilities. We calculate vertical and horizontal mobilities as a function of such superlattice parameters as layer widths and the correlation length of interface roughness. The calculated ratios of the vertical to horizontal mobilities can be used to estimate vertical mobilities from measurements of horizontal mobilities.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B00A30C</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B00G07D</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Méthode mesure</s0>
<s5>30</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Measuring methods</s0>
<s5>30</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Temps relaxation</s0>
<s5>41</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Relaxation time</s0>
<s5>41</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Rugosité interface</s0>
<s5>42</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Interface roughness</s0>
<s5>42</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Superréseau</s0>
<s5>47</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Superlattices</s0>
<s5>47</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Puits quantique</s0>
<s5>48</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Quantum wells</s0>
<s5>48</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Composé binaire</s0>
<s5>50</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Binary compounds</s0>
<s5>50</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Indium Arséniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>51</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Indium Arsenides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>51</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Equation Boltzmann</s0>
<s5>61</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Boltzmann equation</s0>
<s5>61</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>InAs</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>As In</s0>
<s4>INC</s4>
<s5>75</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>0130C</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>0707D</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Transport électron</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Electron transport</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>157</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Quantum sensing and nanophotonic devices</s1>
<s2>08</s2>
<s3>San Francisco CA USA</s3>
<s4>2011</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002161 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 002161 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:11-0232809
   |texte=   Vertical Transport in InAs/GaSb Superlattices: Model Results and Relation to In-Plane Transport
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024